Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.290
Filter
Add filters

Year range
1.
Proceedings of SPIE - The International Society for Optical Engineering ; 12602, 2023.
Article in English | Scopus | ID: covidwho-20245409

ABSTRACT

Nowadays, with the outbreak of COVID-19, the prevention and treatment of COVID-19 has gradually become the focus of social disease prevention, and most patients are also more concerned about the symptoms. COVID-19 has symptoms similar to the common cold, and it cannot be diagnosed based on the symptoms shown by the patient, so it is necessary to observe medical images of the lungs to finally determine whether they are COVID-19 positive. As the number of patients with symptoms similar to pneumonia increases, more and more medical images of the lungs need to be generated. At the same time, the number of physicians at this stage is far from meeting the needs of patients, resulting in patients unable to detect and understand their own conditions in time. In this regard, we have performed image augmentation, data cleaning, and designed a deep learning classification network based on the data set of COVID-19 lung medical images. accurate classification judgment. The network can achieve 95.76% classification accuracy for this task through a new fine-tuning method and hyperparameter tuning we designed, which has higher accuracy and less training time than the classic convolutional neural network model. © 2023 SPIE.

2.
Tien Tzu Hsueh Pao/Acta Electronica Sinica ; 51(1):202-212, 2023.
Article in Chinese | Scopus | ID: covidwho-20245323

ABSTRACT

The COVID-19 (corona virus disease 2019) has caused serious impacts worldwide. Many scholars have done a lot of research on the prevention and control of the epidemic. The diagnosis of COVID-19 by cough is non-contact, low-cost, and easy-access, however, such research is still relatively scarce in China. Mel frequency cepstral coefficients (MFCC) feature can only represent the static sound feature, while the first-order differential MFCC feature can also reflect the dynamic feature of sound. In order to better prevent and treat COVID-19, the paper proposes a dynamic-static dual input deep neural network algorithm for diagnosing COVID-19 by cough. Based on Coswara dataset, cough audio is clipped, MFCC and first-order differential MFCC features are extracted, and a dynamic and static feature dual-input neural network model is trained. The model adopts a statistic pooling layer so that different length of MFCC features can be input. The experiment results show the proposed algorithm can significantly improve the recognition accuracy, recall rate, specificity, and F1-score compared with the existing models. © 2023 Chinese Institute of Electronics. All rights reserved.

3.
ACM International Conference Proceeding Series ; : 73-79, 2022.
Article in English | Scopus | ID: covidwho-20245310

ABSTRACT

Aiming at the severe form of new coronavirus epidemic prevention and control, a target detection algorithm is proposed to detect whether masks are worn in public places. The Ghostnet and SElayer modules with fewer design parameters replace the BottleneckCSP part in the original Yolov5s network, which reduces the computational complexity of the model and improves the detection accuracy. The bounding box regression loss function DIOU is optimized, the DGIOU loss function is used for bounding box regression, and the center coordinate distance between the two bounding boxes is considered to achieve a better convergence effect. In the feature pyramid, the depthwise separable convolution DW is used to replace the ordinary convolution, which further reduces the amount of parameters and reduces the loss of feature information caused by multiple convolutions. The experimental results show that compared with the yolov5s algorithm, the proposed method improves the mAP by 4.6% and the detection rate by 10.7 frame/s in the mask wearing detection. Compared with other mainstream algorithms, the improved yolov5s algorithm has better generalization ability and practicability. © 2022 ACM.

4.
ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023 ; : 3968-3977, 2023.
Article in English | Scopus | ID: covidwho-20244828

ABSTRACT

The COVID-19 pandemic has caused substantial damage to global health. Even though three years have passed, the world continues to struggle with the virus. Concerns are growing about the impact of COVID-19 on the mental health of infected individuals, who are more likely to experience depression, which can have long-lasting consequences for both the affected individuals and the world. Detection and intervention at an early stage can reduce the risk of depression in COVID-19 patients. In this paper, we investigated the relationship between COVID-19 infection and depression through social media analysis. Firstly, we managed a dataset of COVID-19 patients that contains information about their social media activity both before and after infection. Secondly, We conducted an extensive analysis of this dataset to investigate the characteristic of COVID-19 patients with a higher risk of depression. Thirdly, we proposed a deep neural network for early prediction of depression risk. This model considers daily mood swings as a psychiatric signal and incorporates textual and emotional characteristics via knowledge distillation. Experimental results demonstrate that our proposed framework outperforms baselines in detecting depression risk, with an AUROC of 0.9317 and an AUPRC of 0.8116. Our model has the potential to enable public health organizations to initiate prompt intervention with high-risk patients. © 2023 ACM.

5.
ACM International Conference Proceeding Series ; 2022.
Article in English | Scopus | ID: covidwho-20244307

ABSTRACT

This paper proposes a deep learning-based approach to detect COVID-19 infections in lung tissues from chest Computed Tomography (CT) images. A two-stage classification model is designed to identify the infection from CT scans of COVID-19 and Community Acquired Pneumonia (CAP) patients. The proposed neural model named, Residual C-NiN uses a modified convolutional neural network (CNN) with residual connections and a Network-in-Network (NiN) architecture for COVID-19 and CAP detection. The model is trained with the Signal Processing Grand Challenge (SPGC) 2021 COVID dataset. The proposed neural model achieves a slice-level classification accuracy of 93.54% on chest CT images and patient-level classification accuracy of 86.59% with class-wise sensitivity of 92.72%, 55.55%, and 95.83% for COVID-19, CAP, and Normal classes, respectively. Experimental results show the benefit of adding NiN and residual connections in the proposed neural architecture. Experiments conducted on the dataset show significant improvement over the existing state-of-the-art methods reported in the literature. © 2022 ACM.

6.
2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20244302

ABSTRACT

Healthcare systems all over the world are strained as the COVID-19 pandemic's spread becomes more widespread. The only realistic strategy to avoid asymptomatic transmission is to monitor social distance, as there are no viable medical therapies or vaccinations for it. A unique computer vision-based framework that uses deep learning is to analyze the images that are needed to measure social distance. This technique uses the key point regressor to identify the important feature points utilizing the Visual Geometry Group (VGG19) which is a standard Convolutional Neural Network (CNN) architecture having multiple layers, MobileNetV2 which is a computer vision network that advances the-state-of-art for mobile visual identification, including semantic segmentation, classification and object identification. VGG19 and MobileNetV2 were trained on the Kaggle dataset. The border boxes for the item may be seen as well as the crowd is sizeable, and red identified faces are then analyzed by MobileNetV2 to detect whether the person is wearing a mask or not. The distance between the observed people has been calculated using the Euclidian distance. Pretrained models like (You only look once) YOLOV3 which is a real-time object detection system, RCNN, and Resnet50 are used in our embedded vision system environment to identify social distance on images. The framework YOLOV3 performs an overall accuracy of 95% using transfer learning technique runs in 22ms which is four times fast than other predefined models. In the proposed model we achieved an accuracy of 96.67% using VGG19 and 98.38% using MobileNetV2, this beats all other models in its ability to estimate social distance and face mask. © 2023 IEEE.

7.
Electronics ; 12(11):2378, 2023.
Article in English | ProQuest Central | ID: covidwho-20244207

ABSTRACT

This paper presents a control system for indoor safety measures using a Faster R-CNN (Region-based Convolutional Neural Network) architecture. The proposed system aims to ensure the safety of occupants in indoor environments by detecting and recognizing potential safety hazards in real time, such as capacity control, social distancing, or mask use. Using deep learning techniques, the system detects these situations to be controlled, notifying the person in charge of the company if any of these are violated. The proposed system was tested in a real teaching environment at Rey Juan Carlos University, using Raspberry Pi 4 as a hardware platform together with an Intel Neural Stick board and a pair of PiCamera RGB (Red Green Blue) cameras to capture images of the environment and a Faster R-CNN architecture to detect and classify objects within the images. To evaluate the performance of the system, a dataset of indoor images was collected and annotated for object detection and classification. The system was trained using this dataset, and its performance was evaluated based on precision, recall, and F1 score. The results show that the proposed system achieved a high level of accuracy in detecting and classifying potential safety hazards in indoor environments. The proposed system includes an efficiently implemented software infrastructure to be launched on a low-cost hardware platform, which is affordable for any company, regardless of size or revenue, and it has the potential to be integrated into existing safety systems in indoor environments such as hospitals, warehouses, and factories, to provide real-time monitoring and alerts for safety hazards. Future work will focus on enhancing the system's robustness and scalability to larger indoor environments with more complex safety hazards.

8.
Proceedings of SPIE - The International Society for Optical Engineering ; 12567, 2023.
Article in English | Scopus | ID: covidwho-20244192

ABSTRACT

The COVID-19 pandemic has challenged many of the healthcare systems around the world. Many patients who have been hospitalized due to this disease develop lung damage. In low and middle-income countries, people living in rural and remote areas have very limited access to adequate health care. Ultrasound is a safe, portable and accessible alternative;however, it has limitations such as being operator-dependent and requiring a trained professional. The use of lung ultrasound volume sweep imaging is a potential solution for this lack of physicians. In order to support this protocol, image processing together with machine learning is a potential methodology for an automatic lung damage screening system. In this paper we present an automatic detection of lung ultrasound artifacts using a Deep Neural Network, identifying clinical relevant artifacts such as pleural and A-lines contained in the ultrasound examination taken as part of the clinical screening in patients with suspected lung damage. The model achieved encouraging preliminary results such as sensitivity of 94%, specificity of 81%, and accuracy of 89% to identify the presence of A-lines. Finally, the present study could result in an alternative solution for an operator-independent lung damage screening in rural areas, leading to the integration of AI-based technology as a complementary tool for healthcare professionals. © 2023 SPIE.

9.
Decision Making: Applications in Management and Engineering ; 6(1):502-534, 2023.
Article in English | Scopus | ID: covidwho-20244096

ABSTRACT

The COVID-19 pandemic has caused the death of many people around the world and has also caused economic problems for all countries in the world. In the literature, there are many studies to analyze and predict the spread of COVID-19 in cities and countries. However, there is no study to predict and analyze the cross-country spread in the world. In this study, a deep learning based hybrid model was developed to predict and analysis of COVID-19 cross-country spread and a case study was carried out for Emerging Seven (E7) and Group of Seven (G7) countries. It is aimed to reduce the workload of healthcare professionals and to make health plans by predicting the daily number of COVID-19 cases and deaths. Developed model was tested extensively using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R Squared (R2). The experimental results showed that the developed model was more successful to predict and analysis of COVID-19 cross-country spread in E7 and G7 countries than Linear Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). The developed model has R2 value close to 0.9 in predicting the number of daily cases and deaths in the majority of E7 and G7 countries. © 2023 by the authors.

10.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Article in English | Scopus | ID: covidwho-20243842

ABSTRACT

This paper introduces the improved method for the COVID-19 classification based on computed tomography (CT) volumes using a combination of a complex-architecture convolutional neural network (CNN) and orthogonal ensemble networks (OEN). The novel coronavirus disease reported in 2019 (COVID-19) is still spreading worldwide. Early and accurate diagnosis of COVID-19 is required in such a situation, and the CT scan is an essential examination. Various computer-aided diagnosis (CAD) methods have been developed to assist and accelerate doctors' diagnoses. Although one of the effective methods is ensemble learning, existing methods combine some major models which do not specialize in COVID-19. In this study, we attempted to improve the performance of a CNN for the COVID-19 classification based on chest CT volumes. The CNN model specializes in feature extraction from anisotropic chest CT volumes. We adopt the OEN, an ensemble learning method considering inter-model diversity, to boost its feature extraction ability. For the experiment, We used chest CT volumes of 1283 cases acquired in multiple medical institutions in Japan. The classification result on 257 test cases indicated that the combination could improve the classification performance. © 2023 SPIE.

11.
ACM International Conference Proceeding Series ; 2022.
Article in English | Scopus | ID: covidwho-20243833

ABSTRACT

The COVID-19 pandemic still affects most parts of the world today. Despite a lot of research on diagnosis, prognosis, and treatment, a big challenge today is the limited number of expert radiologists who provide diagnosis and prognosis on X-Ray images. Thus, to make the diagnosis of COVID-19 accessible and quicker, several researchers have proposed deep-learning-based Artificial Intelligence (AI) models. While most of these proposed machine and deep learning models work in theory, they may not find acceptance among the medical community for clinical use due to weak statistical validation. For this article, radiologists' views were considered to understand the correlation between the theoretical findings and real-life observations. The article explores Convolutional Neural Network (CNN) classification models to build a four-class viz. "COVID-19", "Lung Opacity", "Pneumonia", and "Normal"classifiers, which also provide the uncertainty measure associated with each class. The authors also employ various pre-processing techniques to enhance the X-Ray images for specific features. To address the issues of over-fitting while training, as well as to address the class imbalance problem in our dataset, we use Monte Carlo dropout and Focal Loss respectively. Finally, we provide a comparative analysis of the following classification models - ResNet-18, VGG-19, ResNet-152, MobileNet-V2, Inception-V3, and EfficientNet-V2, where we match the state-of-the-art results on the Open Benchmark Chest X-ray datasets, with a sensitivity of 0.9954, specificity of 0.9886, the precision of 0.9880, F1-score of 0.9851, accuracy of 0.9816, and receiver operating characteristic (ROC) of the area under the curve (AUC) of 0.9781 (ROC-AUC score). © 2022 ACM.

12.
CEUR Workshop Proceedings ; 3387:331-343, 2023.
Article in English | Scopus | ID: covidwho-20243702

ABSTRACT

The problem of introducing online learning is becoming more and more popular in our society. Due to COVID-19 and the war in Ukraine, there is an urgent need for the transition of educational institutions to online learning, so this paper will help people not make mistakes in the process and afterward. The paper's primary purpose is to investigate the effectiveness of machine learning tools that can solve the problem of assessing student adaptation to online learning. These tools include intelligent methods and models, such as classification techniques and neural networks. This work uses data from an online survey of students at different levels: school, college, and university. The survey consists of questions such as gender, age, level of education, whether the student is in the city, class duration, quality of Internet connection, government/non-government educational institution, availability of virtual learning environment, whether the student is familiar with IT, financial conditions, type of Internet connection, a device used for studying, etc. To obtain the results on the effectiveness of online education were used the following machine learning algorithms and models: Random Forest (RF), Extra Trees (ET), Extreme, Light, and Simple Gradient Boosting (GB), Decision Trees (DT), K-neighbors (K-mean), Logistic Regression (LR), Support Vector Machine (SVM), Naїve Bayes (NB) classifier and others. An intelligent neural network model (NNM) was built to address the main issue. © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR Workshop Proceedings (CEUR-WS.org)

13.
International IEEE/EMBS Conference on Neural Engineering, NER ; 2023-April, 2023.
Article in English | Scopus | ID: covidwho-20243641

ABSTRACT

This study proposes a graph convolutional neural networks (GCN) architecture for fusion of radiological imaging and non-imaging tabular electronic health records (EHR) for the purpose of clinical event prediction. We focused on a cohort of hospitalized patients with positive RT-PCR test for COVID-19 and developed GCN based models to predict three dependent clinical events (discharge from hospital, admission into ICU, and mortality) using demographics, billing codes for procedures and diagnoses and chest X-rays. We hypothesized that the two-fold learning opportunity provided by the GCN is ideal for fusion of imaging information and tabular data as node and edge features, respectively. Our experiments indicate the validity of our hypothesis where GCN based predictive models outperform single modality and traditional fusion models. We compared the proposed models against two variations of imaging-based models, including DenseNet-121 architecture with learnable classification layers and Random Forest classifiers using disease severity score estimated by pre-trained convolutional neural network. GCN based model outperforms both imaging-only methods. We also validated our models on an external dataset where GCN showed valuable generalization capabilities. We noticed that edge-formation function can be adapted even after training the GCN model without limiting application scope of the model. Our models take advantage of this fact for generalization to external data. © 2023 IEEE.

14.
Iranian Journal of Epidemiology ; 18(3):244-254, 2022.
Article in Persian | EMBASE | ID: covidwho-20243573

ABSTRACT

Background and Objectives: Due to the high prevalence of COVID-19 disease and its high mortality rate, it is necessary to identify the symptoms, demographic information and underlying diseases that effectively predict COVID-19 death. Therefore, in this study, we aimed to predict the mortality behavior due to COVID-19 in Khorasan Razavi province. Method(s): This study collected data from 51, 460 patients admitted to the hospitals of Khorasan Razavi province from 25 March 2017 to 12 September 2014. Logistic regression and Neural network methods, including machine learning methods, were used to identify survivors and non-survivors caused by COVID-19. Result(s): Decreased consciousness, cough, PO2 level less than 93%, age, cancer, chronic kidney diseases, fever, headache, smoking status, and chronic blood diseases are the most important predictors of death. The accuracy of the artificial neural network model was 89.90% in the test phase. Also, the sensitivity, specificity and area under the rock curve in this model are equal to 76.14%, 91.99% and 77.65%, respectively. Conclusion(s): Our findings highlight the importance of some demographic information, underlying diseases, and clinical signs in predicting survivors and non-survivors of COVID-19. Also, the neural network model provided high accuracy in prediction. However, medical research in this field will lead to complementary results by using other methods of machine learning and their high power.Copyright © 2022 The Authors.

15.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; 13741 LNCS:154-159, 2023.
Article in English | Scopus | ID: covidwho-20243449

ABSTRACT

Due to the recent COVID-19 pandemic, people tend to wear masks indoors and outdoors. Therefore, systems with face recognition, such as FaceID, showed a tendency of decline in accuracy. Consequently, many studies and research were held to improve the accuracy of the recognition system between masked faces. Most of them targeted to enhance dataset and restrained the models to get reasonable accuracies. However, not much research was held to explain the reasons for the enhancement of the accuracy. Therefore, we focused on finding an explainable reason for the improvement of the model's accuracy. First, we could see that the accuracy has actually increased after training with a masked dataset by 12.86%. Then we applied Explainable AI (XAI) to see whether the model has really focused on the regions of interest. Our approach showed through the generated heatmaps that difference in the data of the training models make difference in range of focus. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

16.
Energies ; 16(10), 2023.
Article in English | Web of Science | ID: covidwho-20243050

ABSTRACT

The transition to Electric Vehicles (EV) in place of traditional internal combustion engines is increasing societal demand for electricity. The ability to integrate the additional demand from EV charging into forecasting electricity demand is critical for maintaining the reliability of electricity generation and distribution. Load forecasting studies typically exclude households with home EV charging, focusing on offices, schools, and public charging stations. Moreover, they provide point forecasts which do not offer information about prediction uncertainty. Consequently, this paper proposes the Long Short-Term Memory Bayesian Neural Networks (LSTM-BNNs) for household load forecasting in presence of EV charging. The approach takes advantage of the LSTM model to capture the time dependencies and uses the dropout layer with Bayesian inference to generate prediction intervals. Results show that the proposed LSTM-BNNs achieve accuracy similar to point forecasts with the advantage of prediction intervals. Moreover, the impact of lockdowns related to the COVID-19 pandemic on the load forecasting model is examined, and the analysis shows that there is no major change in the model performance as, for the considered households, the randomness of the EV charging outweighs the change due to pandemic.

17.
IEEE Access ; : 1-1, 2023.
Article in English | Scopus | ID: covidwho-20242834

ABSTRACT

During the formation of medical images, they are easily disturbed by factors such as acquisition devices and tissue backgrounds, causing problems such as blurred image backgrounds and difficulty in differentiation. In this paper, we combine the HarDNet module and the multi-coding attention mechanism module to optimize the two stages of encoding and decoding to improve the model segmentation performance. In the encoding stage, the HarDNet module extracts medical image feature information to improve the segmentation network operation speed. In the decoding stage, the multi-coding attention module is used to extract both the position feature information and channel feature information of the image to improve the model segmentation effect. Finally, to improve the segmentation accuracy of small targets, the use of Cross Entropy and Dice combination function is proposed as the loss function of this algorithm. The algorithm has experimented on three different types of medical datasets, Kvasir-SEG, ISIC2018, and COVID-19CT. The values of JS were 0.7189, 0.7702, 0.9895, ACC were 0.8964, 0.9491, 0.9965, SENS were 0.7634, 0.8204, 0.9976, PRE were 0.9214, 0.9504, 0.9931. The experimental results showed that the model proposed in this paper achieved excellent segmentation results in all the above evaluation indexes, which can effectively assist doctors to diagnose related diseases quickly and improve the speed of diagnosis and patients’quality of life. Author

18.
2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20242756

ABSTRACT

COVID-19 is an outbreak of disease which is created by China. COVID-19 is originated by coronavirus (CoV), generally created mutation pattern with 'SARS-CoV2' or '2019 novel coronavirus'. It is declared by the World Health Organization of 2019 in December. COVID-19 is a contagious virus and contiguous disease that will create the morality of life. Even though it is detected in an early stage it can be incurable if the severity is more. The throat and nose samples are collected to identify COVID-19 disease. We collected the X-Ray images to identify the virus. We propose a system to diagnose the images using Convolutional Neural Network (CNN) models. Dataset used consists of both Covid and Normal X-ray images. Among Convolutional Neural Network (CNN) models, the proposed models are ResNet50 and VGG16. RESNET50 consists of 48 convolutional, 1 MaxPool, and Average Pool layers, and VGG16 is another convolutional neural network that consists of 16 deep layers. By using these two models, the detection of COVID-19 is done. This research is designed to help physicians for successful detection of COVID-19 disease at an early stage in the medical field. © 2022 IEEE.

19.
2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development, OTCON 2022 ; 2023.
Article in English | Scopus | ID: covidwho-20242650

ABSTRACT

Deep Convolutional Neural Networks are a form of neural network that can categorize, recognize, or separate images. The problem of COVID-19 detection has become the world's most complex challenge since 2019. In this research work, Chest X-Ray images are used to detect patients' Covid Positive or Negative with the help of pre-trained models: VGG16, InceptionV3, ResNet50, and InceptionResNetV2. In this paper, 821 samples are used for training, 186 samples for validation, and 184 samples are used for testing. Hybrid model InceptionResNetV2 has achieved overall maximum accuracy of 94.56% with a Recall value of 96% for normal CXR images, and a precision of 95.12% for Covid Positive images. The lowest accuracy was achieved by the ResNet50 model of 92.93% on the testing dataset, and a Recall of 93.93% was achieved for the normal images. Throughout the implementation process, it was discovered that factors like epoch had a considerable impact on the model's accuracy. Consequently, it is advised that the model be trained with a sufficient number of epochs to provide reliable classification results. The study's findings suggest that deep learning models have an excellent potential for correctly identifying the covid positive or covid negative using CXR images. © 2023 IEEE.

20.
2022 IEEE Information Technologies and Smart Industrial Systems, ITSIS 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20242116

ABSTRACT

The main purpose of this paper was to classify if subject has a COVID-19 or not base on CT scan. CNN and resNet-101 neural network architectures are used to identify the coronavirus. The experimental results showed that the two models CNN and resNet-101 can identify accurately the patients have COVID-19 from others with an excellent accuracy of 83.97 % and 90.05 % respectively. The results demonstrates the best ability of the used models in the current application domain. © 2022 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL